Compressing Cryptographic Resources
نویسندگان
چکیده
A private-key cryptosystem may be viewed as a means by which a trusted dealer privately conveys a large, shared pseudo-random object to a pair of players, using little communication. Alternatively, the messages distributed by the dealer may be viewed as a secure compression of a pair of large identical random pads (or random functions) into a shorter shared “key” or “seed”. We pose the question of extending this compression problem to more general correlation patterns among several players. Unlike the simple case of identical pads, where the main security concern is with respect to external eavesdroppers, in the case of general correlations participants also have to be protected from each other. That is, collusions of computationally-bounded players should gain no additional knowledge about the joint pads of the remaining players from the compressed messages they receive, other than what follows from the pads they generate and from knowing the joint distribution of all pads. While this ideal requirement is inherently impossible to meet using little communication, it turns out that it can be approximated to a satisfactory level, allowing to securely use such compressed correlated pads in a wide class of protocols. We propose a simple and modular replication-based approach for securely compressing any linear correlation pattern, using pseudo-random generators or pseudo-random functions in a black-box manner. Applications include amortizing the communication costs of private multi-party computation and proactive secret-sharing of large secrets.
منابع مشابه
Design of cybernetic metamodel of cryptographic algorithms and ranking of its supporting components using ELECTRE III method
Nowadays, achieving desirable and stable security in networks with national and organizational scope and even in sensitive information systems, should be based on a systematic and comprehensive method and should be done step by step. Cryptography is the most important mechanism for securing information. a cryptographic system consists of three main components: cryptographic algorithms, cryptogr...
متن کاملCompressed Data Content Type for Cryptographic Message Syntax (CMS)
This document defines a format for using compressed data as a Cryptographic Message Syntax (CMS) content type. Compressing data before transmission provides a number of advantages, including the elimination of data redundancy which could help an attacker, speeding up processing by reducing the amount of data to be processed by later steps (such as signing or encryption), and reducing overall me...
متن کاملOn Compressing Encrypted Data without the Encryption Key
When it is desired to transmit redundant data over an insecure and bandwidth-constrained channel, it is customary to first compress the redundant data and then encrypt it for security reasons. In this paper, we investigate the novelty of reversing the order of these steps, i.e. first encrypting and then compressing. Although counter-intuitive, we show surprisingly that through the use of coding...
متن کاملPrivacy-Preserving Shortest Path Computation
Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client’s location and the service provider’s ...
متن کاملLightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999